

HDD/ICM 14J

Electrical data	Data	sheet

Value	unit	Pa winding	Ma winding
Number of poles		20	20
Number of pole pairs		10	10
Inductance/Phase	mH	4.4	1.1
Resistance/Phase	Ohm	0.77	0.19
Resistance/Phase-Phase	Ohm	1.5	0.38
Back EMF/Phase-Phase RMS	Vs/rad	0.90	0.45
Back EMF @ 1000 rpm	V	94	47
Torque constant (RMS)	Nm/A	1.56	0.78
Max rail voltage	V	750	750
Recommended peak current	Α	15	30
Torque at recommended peak current	Nm	22.5	22.5

For higher torques, see next page. The torque constant is defined as the back EMF; friction losses are ignored. Data are based on a small sample and not definitive.

Mechanical data (resolver feedback) Insulation class

J kac	cm ² 13.3 13.7		Protection class
	no brake brake	no brake brake	Directive 73/23/EEC and 93/68/EEC. Test report E9911111E01.
Value unit	t HDD14J	ICM14J	The insulation system complies with the requirements of EEC LV

Mass kg 6.0 6.5

available on request.

Thermistor

HDD motors comply with the requirements for IP-65. IP-67 is

Holding brake

Overheat protection consists of triple PTC termistors

(one on each phase).

J kgcm² 0.4 R @ 25 C 100 to 350 Ohm Voltage V DC 24 R @ 145 C < 1650 Ohm

R @ 155 C > 4 kOhm

Be size as size as size and some structure ling as size as connector as the size as si

HDD 14 J - Pa - A - A - A - A - AAA

Type HDD = shaft motor, ICM = internal coupling motor.

Flange size Approximate in cm. 14 = 140 mm.

Stator length J(shortest), N (longest).

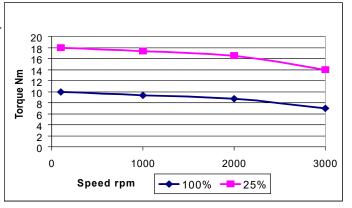
Winding Pa suitable for 3000 rpm at rail voltage 560V Ma suitablefor 3000 rpm at rail voltage 320V

Feedback See the feedback list on www.hdd.se/Available feedback

Power connector Many different pinouts available; see www.hdd.se/Connector pin-outs

Brake A = no brake, D = holding brake. Data see above.

Shaft key A = shaft with key, B = shaft without key.

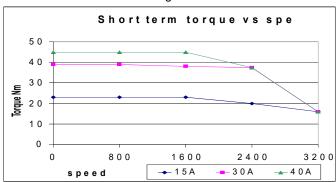

Options AAA = standard. For other options please contact HDD.

Torque in Nm at 90°C temp rise (median temp rise, i.e. average between min and max temp for 25% cycle).

Speed	Duty cycle	
	100%	25%
100rpm	10.0	18.0
1000rpm	9.3	17.3
2000rpm	8.7	16.5
3000rpm	7.0	14.0

Current at 90°C temp rise, in Ampere rms

Dutycycle	100%	25%	100%	25%
Winding	Pa	Pa	Ma	Ma
100rpm	7.0	13.0	14	26
1000rpm	6.6	12.7	13.2	25.4
2000rpm	6.0	12.3	12	24.6
3000rpm	5.3	10.6	10.6	21.2

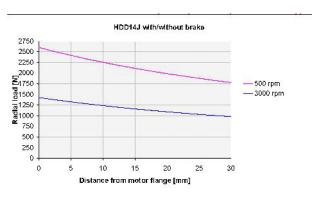

Data• were measured on an HDD14J-Pa series motor mounted on a vertical 450 x 375 x 30 mm steel plate in free air, with a winding temperature rise of 90°C and driven by a commercially available inverter.

Important note on peak torque and currents

The HDD/ICM motors are capable of high peak torques. At very high peak torques the permitted pulse time is very limited as a high current in a very small motor causes rapid temperature rise in the copper winding. The protection thermistor will not react fast enough to protect the winding during high pulse loads. A 40A rms current to a HDD14J-Pa will give some 45 Nm, but the copper winding temperature will increase with some 40°C **per second.** This is not a problem for short pulses of < 0.5 seconds as long as the rms value of the current is kept below some 7 A. The short term torque graph below represents acceleration ramps at various commanded currents; the actual currents may be lower if the driver has not been able to compensate for the high acceleration.

Torque at various commanded currents

HDD 14J-Pa at 560V rail voltage



Maximum load on shaft at life expectancy 20,000 h (shaft motors only)

Maximal axial load (push): 1000 N at 500 rpm, 300 at 3000 rpm.

Maximal axial load (pull): 100 N at all speeds.

Maximal radial load is given by the curves below.

