

HDD14N

Data sheet

Electrical data

Value	unit	Winding	
		Pa	Ma
Number of poles		20	20
Number of pole pairs		10	10
Inductance/Phase	mH	2.25	0.89
Resistance/Phase	Ohm	0.32	0.14
Resistance/Phase-phase	Ohm	0.64	0.29
Back EMF/Phase-Phase RMS	Vs/rad	0.90	0.55
Back EMF @ 1000 rpm	V	95	58
Torque constant (RMS)	Nm/A	1.57	0.96
Max rail voltage	V	750	750
Recommended peak current	Α	30	49
Torque at recommended peak current	Nm	45	45

For higher torques, see next page. The torque constant is defined as the back EMF; friction losses are ignored. Data are based on a small sample and not definitive.

Mechanical data (resolver feedback) Insulation class

	•	•	
Value unit	HDD14N	ICM14N	The insulation system complies with the requirements of EEC LV
	no brake brake	no brake brake	Directive 73/23/EEC and 93/68/EEC. Test report E9911111E01.
J kgcm	² 32.6 33.0		Protection class
Mass kn	10.0 10.5		HDD motors comply with the requirements for IP-65. IP-67 is

available on request.

Thermistor

R @ 155 C

Holding brake

Mass kg

Torque 9 kgcm² 0.4 V DC Voltage 24 W Power 12

10.0

(one on each phase). R @ 25 C 100 to 350 Ohm R @ 145 C < 1650 Ohm

> 4 kOhm

Overheat protection consists of triple PTC termistors

Motor name structure length Flange size Power Stator HDD Ν - Pa - A - A - A - A - AAA

HDD = shaft motor, ICM = internal coupling motor. Type

Flange size Approximate in cm. 14 = 140 mm.

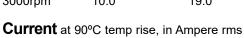
10.5

J(shortest), N (longest). Stator length

Winding Pa suitable for 3000 rpm at rail voltage 560V Ma suitablefor 3000 rpm at rail voltage 320V

Feedback See the feedback list on www.hdd.se/Available feedback

Power connector Many different pinouts available; see www.hdd.se/Connector pin-outs


Brake A = no brake, D = holding brake. Data see above.

Shaft key A = shaft with key, B = shaft without key.

Options AAA = standard. For other options please contact HDD. Torque in Nm at 90°C temp rise (median temp rise,

i.e. average between min and max temp for 25% cycle).

Speed	Duty cycle	Duty cycle		
	100%	25%		
100rpm	18.0	32.7		
1000rpm	15.7	31.0		
2000rpm	12.7	28.0		
3000rpm	10.0	19.0		

Duty cycle	100%		25%	
Winding	Pa	Ma	Pa	Ma
100rpm	12.5	20.5	23.2	38.0
1000rpm	11.2	18.3	22.3	36.5
2000rpm	9.2	15.1	21.0	34.4
3000rpm	7.7	12.6	19.0	31.1

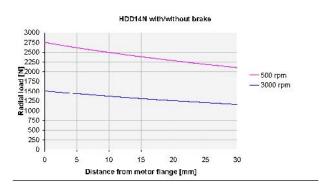

Data• were measured on an HDD14N-Pa series motor mounted on a vertical 450 x 375 x 30 mm steel plate in free air, with a winding temperature rise of 90°C and driven by acommercially available inverter.

Important note on peak torque and currents

The HDD/ICM motors are capable of high peak torques. At very high peak torques the permitted pulse time is very limited as a high current in a very small motor causes rapid temperature rise in the copper winding. The protection thermistor will not react fast enough to protect the winding during high pulse loads. A 80A rms current to a HDD14N-Pa will give some 90 Nm, but the copper winding temperature will increase with some 40°C **per second.** This is not a problem for short pulses of < 0.5 seconds as long as the rms value of the current is kept below some 10 A. The short term torque graph below represents acceleration ramps at various commanded currents; the actual currents may be lower if the driver has not been able to compensate for the high acceleration.

Torque at various commanded currents

HDD 14N-Pa at 560V rail voltage



Maximum load on shaft at life expectancy 20,000 h (shaft motors only)

Maximal axial load (push): 1000 N at 500 rpm, 300 at 3000 rpm.

Maximal axial load (pull): 100 N at all speeds.

Maximal radial load is given by the curves below.

