

HSM 09N Data sheet

Electrical data

Value	unit	Pa winding	Ma winding
Number of poles		20	20
Number of pole pairs		10	10
Inductance/Phase	mΗ	4.9	1.2
Resistance/Phase	Ohm	1.9	0.47
Resistance/Phase-phase	Ohm	3.9	0.94
Back EMF/Phase-Phase RMS	Vs/rad	0.84	0.42
Back EMF @ 1000 rpm	V	88	44
Torque constant (RMS)	Nm/A	1.46	0.73
Max rail voltage	V	750	750
Recommended peak current	Α	13	26
Torque at recommended peak current	Nm	16.4	16.4

For higher torques, see next page

Mechanical data

Insulation class

Value unit Singleturn Multiturn The insulation system complies with the requirements of EEC LV no brake brake no brake brake Directive 73/23/EEC and 93/68/EEC. Test report E9911111E01.

J kgcm² 7.8 - 8.2 - **Protection class**

Mass kg 3.8 - 4.1 - HDD motors comply with the requirements for IP-65. IP-67 is available on request.

Len mm 127.9 - 127.9 -

Thermistor

Overheat protection consists of triple PTC termistors (one on each phase).

R @ 25 C 100 to 350 Ohm R @ 145 C < 1650 Ohm R @ 155 C > 4 kOhm

wotor nam	ie stru	Clure			ž			
Уре	lange size	Stator length	Vinding	-eedback	ower connec	3rake	shaft key	Options

HSM 09 - N - Pa - ST - A - A - A - AAA

Type HSM = Hollow Shaft Motor
Flange size Approximate in cm. 09 = 92 mm.
Stator length J (shortest), N, Q (longest).

Winding Pa suitable for 3000 rpm at rail voltage 560V

Ma suitablefor 3000 rpm at rail voltage 320V

Feedback ST/SN = SinCos single/multiturn.

Power connector Many different pinouts available; see www.hdd.se/Connector pin-outs

Brake A = no brake (no other option available for HSM motors)

Shaft key A (no options available for HSM motors)

Options AAA = standard. For other options please contact HDD.

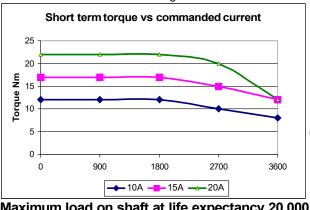
Torque at 90°C temp rise, in Nm

	Duty cyc	le
Speed	100%	25%
100rpm	5.2	10.0
1000rpm	4.9	9.6
2000rpm	4.4	9.0
3000rpm	3.6	7.7

Current at 90°C temp rise, in Ampere rms

12 -	
10 -	
8 -	
6 -	
4 -	—
2 -	
0 -	
(1000 2000 3000
	Speed rpm
	10 - 8 - 6 - 4 - 2 - 0 -

Duty cycle	100%		25%	6
Winding	Pa	Ma	Pa	Ma
locked rotor	3.4	6.3		
100rpm	3.9	7.4	7.8	14.7
1000rpm	3.8	7.2	7.6	14.4
3000rpm	3.3	6.3	6.9	13.0


Data• were measured on an HSM 09N-Pa series motor mounted on a vertical 260 x 200 x 12 mm aluminum plate in free air, with a winding temperature rise of 90°C and driven by a commercially available inverter. Data for Ma windings were calculated.

Important note on peak torque and currents

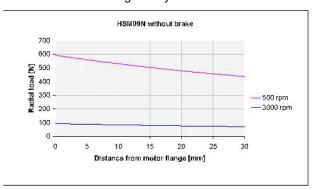
The HSM motors are capable of high peak torques. At very high peak torques the permitted pulse time is very limited as a high current in a very small motor causes rapid temperature rise in the copper winding. The protection thermistor will not react fast enough to protect the winding during high pulse loads. A 20A rms current to a HSM09N-Pa will give some 23.3 Nm, but the copper winding temperature will increase with some 42°Cper second. This is not a problem for short pulses of < 0.5 seconds as long as the rms value of the current is kept below some 3.3 A. The short term torque graph below represents acceleration ramps at various commanded currents; the actual currents are lower as the driver has not been able to compensate for the high acceleration.


Torque at various commanded currents

HSM 09N-Pa at 560V rail voltage

kT derating factor

Low speed, HSM 09N-Pa



Maximum load on shaft at life expectancy 20,000 h

Maximal axial load (push): 1600 N at 500 rpm, 650 N at 3000 rpm.

Maximal axial load (pull): 50 N at all speeds.

Maximal radial load is given by the curves below.

